
Table of Contents
Table of Contents 1
Chapter 1: The basics about NSAlert 2

Alert styles 2
Alert attributes 2
Where information appears in the Alert 3
User Buttons 3
Suppression checkbox 3

Chapter 2: "display enhanced alert" 5
"display enhanced alert" input parameters 5
"display enhanced alert" output 5
Text description of "display enhanced alert" 7



Chapter 1: The basics about NSAlert
The programmer can specify 6 types of things:

Alert style
Alert text
Button titles
Custom icon
Help text: Can can allow a help button to appear in the alert for help relating to the alert
Suppression checkbox: Option to show/hide checkbox to suppress future alters

The default alert style is NSWarningAlertStyle.

Alert styles
"Alert style" is a property of NSAlert

NSWarningAlertStyle (integer constant = 0)
Used to warn the user about a current or impending event. The purpose is more than 
informational but not critical.

NSInformationalAlertStyle (integer constant = 1)
An alert used to inform the user about a current or impending event.

NSCriticalAlertStyle (integer constant = 2)
Reserved for critical alerts, such as when severe consequences might result from certain user 
responses (for example, a “clean install” will erase all data on a volume). This style includes a 
caution icon badged with the app icon.

Currently there is no visual difference between informational and warning alerts. You should only 
use the critical alert style if warranted.

Alert attributes
NSAlert objects have the following attributes:

Type: (Integer) NSWarningAlertStyle, NSInformationalAlertStyle, NSCriticalAlertStyle

Message text: (String) The main message of the alert.

Informative text: (String) Additional information about the alert.

Response buttons: (set of NSButtons) The buttons the user can click.

Suppression checkbox: (boolean) Show or hides the suppression checkbox.

Accessory view: (NSView) Where the controls and fields specified by scripter are placed.
   
Icon:  This is not currently implemented in the "display enhanced alert" handler.

Help:  This is not currently implemented in the "display enhanced alert" handler.



Where information appears in the Alert
NSAlerts display information in a particular order from top to bottom, except the icon which is to 
the left of all the other information.  The order is listed below:

Message text
Informative text
Accessory view: 
Suppression checkbox
Response buttons

The icon is show in the top left corner of the alert: not currently implemented

The accessory view is where the: text fields, labeled fields, checkboxes, popups, radio button 
matrixes, path controls and rules are placed.

User Buttons
A default button is automatically created when a NSAlert is called.  The button uses the "return 
key" as a keyboard shortcut.

Any button with a title of "Cancel" will automatically use the escape key as a keyboard shortcut.

Any button with the title "Don’t Save" and is not the first (rightmost) button will automatically use 
the keyboard shortcut Command-D as a keyboard shortcut.

Other key board shortcuts for buttons can be added by using the method "setKeyEquivalent" of 
the NSButton class.

All buttons, except the the default button, have to be added using the method 
"addButtonWithTitle"

The first button (the "default button") is placed at the far right of button row at the bottom of the 
alert.  Each new button is added to the left of the previously existing button(s).

Buttons are identified by their horizontal position starting from the rightmost button.  The number 
to identify the Nth most button from the right is equal to 999 + N, e.g. 1000 means the rightmost 
is being referenced, 1002 means the third button from the right edge of the dialog is being 
referenced, 1005 means the sixth button from the right edge of the dialog is being referenced, 
and so on.

There are 3 predefined integer constants to identify the first 3 buttons:
NSAlertFirstButtonReturn  = 1000, which means the first button was clicked
NSAlertSecondButtonReturn  = 1001, which means the second button was clicked
NSAlertThirdButtonReturn  = 1002 which means the third button was clicked

Suppression checkbox
The "Suppression checkbox" is a property of NSAlert. When "TheAlert.showsSuppressionButton" 
is set to "Yes" (The variable "TheAlert" holds a pointer to the Alert data structure in memory) a 
check box followed by programmer specified text is displayed on the Alert.  If  
"TheAlert.showsSuppressionButton" is set to "No" then then neither the check box nor the 
programmer specified text is displayed and the row of buttons moves up to fill in the place that 



would have been uses for the check box.  By default this value is set to "No" which which does 
not show the check box and is associated suppression text.

The suppression checkbox allows the user to click the suppression checkbox, which will 
suppress the display of future alerts when the event that triggered the current alert occurs again.

A suppression checkbox has the following text displayed to the right of the text box: “Do not show 
this message again”  This is the default text displayed.  The text is actually the title of the 
checkbox.  This text can be changed by the following expression:

[[alert suppressionButton] setTitle:@"My new button title."];

This expression references the suppressionButton of the alert and sets it to the new value.



Chapter 2: "display enhanced alert"
"display enhanced alert" input parameters

The parameters of "display enhanced alert" are:
direct parameter    (called "Message text" in NSAlert)
message    (called "Informative text" in NSAlert)
as    (called "Alert style" in NSAlert)
buttons    (NSAlert property is called "buttons," aka "Response buttons" in Obj-C docs)
suppression    (aka SuppressionButton in Obj-C docs)
giving up after (Not done by NSAlert, entirely implemented in "display enhanced alert")
acc view width    (Used to create an "Accessory View" where alert items are placed)
acc view height    (Used to create an "Accessory View" where alert items are placed)
acc view controls    (A list of all the controls to be created by "display enhanced alert")

To see where various things will appear in a dialog see "Where information appears in the Alert" 
in Chapter 1.

"display enhanced alert" output

The output consists of a list of the three items: the name of the item that dismissed the alert, the 
boolean state of the suppression checkbox, and a list of the values of the controls passed into 
"acc view controls"

First item in list: It will either be the name of the button clicked, or "Gave Up" which indicates the 
alert timed out from exceeding the time specified in the "giving up after" input parameter.

Second item in list: The boolean state of the suppression checkbox at the time the dialog closed.

Third item in list: A list consisting of the name of the button pressed (or 'Gave Up'), the boolean 
state of the suppression button, and a list of the values of the controls passed in 'acc view 
controls'.

"display enhanced alert" can take input from14 different handlers to create controls for the alert.  
Table 1 shows what those 14 handlers return.

Any data returned from these handlers that "does not" the symbol ‡ following it's description in 
table 1 "will" be used by the "display enhanced alert" handler to create the alert.   Any data 
returned from these handlers that "does" have the symbol ‡ following it's description "will not" be 
used by "display enhanced alert" handler.  

Name of handler Data returned by handler: listed by list item number

create field 1: NSTextField: Text field that receives text
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡



create top labeled field 1: NSTextField: Text field that receives text
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create side labeled field 1: NSTextField: Text field that receives text
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
4: class of "field left" input parameter: The width of the field ‡

create path control 1: NSPathControl: 
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create labeled path control 1: NSPathControl: Holds selected path
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create checkbox 1: NSButton: The checkbox
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create labeled checkbox 1: NSButton: The checkbox
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
4: class of the "checkbox left" input parameter:

The distance between accessory view's left and checkbox ‡

create popup 1: NSPopUpButton: The popup
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create labeled popup 1: NSPopUpButton: The popup
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
4: class of the " popup left" input parameter:

The distance between accessory view's left and checkbox ‡

create matrix 1: NSMatrix: The matrix (radio buttons)
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
3: real: distance between accessory view's left and checkbox ‡

Name of handler Data returned by handler: listed by list item number



Table 1: Types returned by handlers that create controls

‡ This returned item is not used by "display enhanced alert"

Text description of "display enhanced alert"
Lines 2 -8: StyleType (aka "Alert style") is set to the proper integer value.
Line 9-12: A check is performed to verify user interaction is allowed.  If it isn't allowed an error is 
created.

Line 14: An NSRect is created using NSMakeRect ( x, y, width, height ).  The "x" and "y" specify 
the location of a rectangle while the user supplied width and height form the actual rectangle.  
The origin is always specified as [0, 0].  The NSRect is used as input for initWithFrame.  
theAccessoryView is set to a new instance of a fully initialized NSView created from alloc()'s 
initWithFrame.

LineL 15: Sets up a subview where the controls and text fields specified in controlsList are 
placed.

Line 17: Reverses the order of the buttons in buttonsList.  The button order in AppleScript is the 
reverse of the order in Obj-C. 

Line 19: Creates and initializes a new NSAlert.

Lines 22-30:

create labeled matrix 1: NSMatrix: The matrix (radio buttons)
2: NSTextField: 
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
4: real: class of the "matrix left" input parameter:

The distance between accessory view's left and checkbox ‡

create label 1: NSTextField: The label
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
3: real: The actual width ‡

create rule 1: NSBox: Used to draw the line on alert
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

Name of handler Data returned by handler: listed by list item number


