
Table of Contents
Table of Contents 1
Chapter 1: What is "Dialog Toolkit" 2
Chapter 2: The basics about NSAlert 3

Alert styles 3
Alert attributes 3
Where information appears in the Alert 4
User Buttons 4
Identifying which button was clicked 4
Suppression checkbox 5

Chapter 3: "display enhanced alert" 6
"display enhanced alert" input parameters 6
"display enhanced alert" output 6

Appendix A: Description of how "display enhanced alert" works 9

Chapter 1: What is "Dialog Toolkit"
"Dialog Toolkit" is a free AppleScript library created by Shane Stanly that allows scripters to
create a dialog with more then 1 string of output text, more then 1 input field, more then 3 buttons
as well as include popup buttons, checkboxes, radio buttons, any kind of label at all, as well as
create something called a path control. An example of 1 type of a "path
control" (NSPathStyleNavigationBar) is seen at the bottom of a Finder window to show the path
of the currently selected item. "Dialog Toolkit" uses the NSPathStyleStandard type for the path
controls.

In addition to providing new features "Dialog Toolkit" also makes the actual scripting easier to
perform. A lot of the work necessary to create individual "items" to go in the alert, as well as
creating the actual enhanced alert, are done by the "Dialog ToolKit."

The actual item used to display the information in an enhanced alert is something called an
NSAlert. This is the basic building block programmers use to create Alerts. Using NSAlerts
affects things like:

What the enhanced alert looks like,
What can go into the enhanced alert,
Operations that can be performed by an enhanced alert,
The way an enhanced alert is used,
What features that come built into an enhanced alert without additional coding, and
The key commands that are built into an enhanced alert.

All of the features just listed comes from the object oriented nature of Obj-C. Different objects in
Obj-C have different capabilities and know about different things. So much of the way "Dialog
Toolkit" behaves and what is possible to do with it comes from the behavior and power of the
NSAlert object.

Therefore the better a person understands NSAlert the better they can understand "Dialog
Toolkit." But "Dialog Toolkit" can still be used without knowing anything about NSAlerts.
Therefore "Chapter 2: The basics about NSAlert" can be skipped if you only want to use "Dialog
Toolkit" as is, and only want to use as is the 5 capabilities that are nonstandard in ordinary
AppleScript dialogs (popup buttons, checkboxes, radio buttons, labels and path controls).

To tie it all together it can be said that using "Dialog Toolkit" allows the scripter to produce an
enhanced alert while using ordinary NSAlerts, and read the user information entered after the
dialog is dismissed.

This manual is not intended as a guide to NSAlerts used separate from "Dialog Toolkit." Using
NSAlerts without "Dialog Toolkit" will most likely bring up issues not discussed in this manual.

Chapter 2: The basics about NSAlert
Note: "This chapter can be skipped if you only want to use "Dialog Toolkit" as is, and only want to
use buttons, checkboxes, radio buttons, labels and path controls as is. Changing any of these
things in "Dialog ToolKit" without understanding the basics about the NSAlert would most likely
lead to problems.

The programmer can specify 6 types of things:
Alert style
Alert text
Button titles
Custom icon
Help text: Can can allow a help button to appear in the alert for help relating to the alert
Suppression checkbox: Option to show/hide checkbox to suppress future alters

The default alert style is NSWarningAlertStyle.

Alert styles
"Alert style" is a property of NSAlert

NSWarningAlertStyle (integer constant = 0)
Used to warn the user about a current or impending event. The purpose is more than
informational but not critical.

NSInformationalAlertStyle (integer constant = 1)
An alert used to inform the user about a current or impending event.

NSCriticalAlertStyle (integer constant = 2)
Reserved for critical alerts, such as when severe consequences might result from certain user
responses (for example, a “clean install” will erase all data on a volume). This style includes a
caution icon badged with the app icon.

Currently there is no visual difference between informational and warning alerts. You should only
use the critical alert style if warranted.

As of 8/10/2016 the NSAlert styles have deprecated. There are new constants currently being
used in beta testing. The numeric values of the constants have remained the same but the
names have changed. All the constants now all start with "NSAlertStyle." These new constants
are:

NSAlertStyleWarning (integer constant = 0)
NSAlertStyleInformational (integer constant = 1)
NSAlertStyleCritical (integer constant = 2)

Alert attributes
NSAlert objects have the following attributes:

Type: (Integer) NSWarningAlertStyle, NSInformationalAlertStyle, NSCriticalAlertStyle

Message text: (String) The main message of the alert.

Chapter 2: The basics about NSAlert

Informative text: (String) Additional information about the alert.

Response buttons: (set of NSButtons) The buttons the user can click.

Suppression checkbox: (boolean) Show or hides the suppression checkbox.

Accessory view: (NSView) Where the controls and fields specified by scripter are placed.

Icon: This is not currently implemented in the "display enhanced alert" handler.

Help: This is not currently implemented in the "display enhanced alert" handler.

Where information appears in the Alert
NSAlerts display information in a particular order from top to bottom, except the icon which is to
the left of all the other information. The order is listed below:

Message text
Informative text
Accessory view
Suppression checkbox
Response buttons

The icon is show in the top left corner of the alert: not currently implemented

The accessory view is where the: text fields, labeled fields, checkboxes, popups, radio button
matrixes, path controls and rules are placed.

User Buttons
A default button is automatically created when a NSAlert is called. The button uses the "return
key" as a keyboard shortcut.

Any button with a title of "Cancel" will automatically use the escape key as a keyboard shortcut.

Any button with the title "Don’t Save" and is not the first (rightmost) button will automatically use
the keyboard shortcut Command-D as a keyboard shortcut.

Other key board shortcuts for buttons can be added by using the method "setKeyEquivalent" of
the NSButton class.

All buttons, except the the default button, have to be added using the method
"addButtonWithTitle"

The first button (the "default button") is placed at the far right of button row at the bottom of the
alert. Each new button is added to the left of the previously existing button(s).

Identifying which button was clicked
Buttons are identified by their horizontal position starting from the rightmost button. The number
to identify the Nth most button from the right is equal to 999 + N, e.g. 1000 means the rightmost
is being referenced, 1002 means the third button from the right edge of the dialog is being

Chapter 2: The basics about NSAlert

referenced, 1005 means the sixth button from the right edge of the dialog is being referenced,
and so on.

There are 3 predefined integer constants to identify the first 3 buttons:
NSAlertFirstButtonReturn = 1000, which means the first button was clicked
NSAlertSecondButtonReturn = 1001, which means the second button was clicked
NSAlertThirdButtonReturn = 1002 which means the third button was clicked

Suppression checkbox
The "Suppression checkbox" is a property of NSAlert. When "TheAlert.showsSuppressionButton"
is set to "Yes" (The variable "TheAlert" holds a pointer to the Alert data structure in memory as
opposed to the data structure itself.) a check box followed by programmer specified text is
displayed on the Alert. If "TheAlert.showsSuppressionButton" is set to "No" then then neither the
check box nor the programmer specified text is displayed and the row of buttons moves up to fill
in the place that would have been uses for the check box. By default this value is set to "No"
which which does not show the check box and is associated suppression text.

The suppression checkbox allows the user to click the suppression checkbox, which will
suppress the display of future alerts when the event that triggered the current alert occurs again.

A suppression checkbox has the following text displayed to the right of the text box: “Do not show
this message again” This is the default text displayed. The text is actually the title of the
checkbox. This text can be changed by the following expression:

[[alert suppressionButton] setTitle:@"My new button title."];

This expression references the suppressionButton of the alert and sets it to the new value.

Chapter 3: "display enhanced alert"
Note: This chapter covers concepts necessary to using "display enhanced alert."

"display enhanced alert" input parameters
The parameters of "display enhanced alert" are:

direct parameter (called "Message text" in NSAlert)
message (called "Informative text" in NSAlert)
as (called "Alert style" in NSAlert)
buttons (NSAlert property is called "buttons," aka "Response buttons" in Obj-C docs)
suppression (aka SuppressionButton in Obj-C docs)
giving up after (Not done by NSAlert, entirely implemented in "display enhanced alert")
acc view width (Used to create an "Accessory View" where alert items are placed)
acc view height (Used to create an "Accessory View" where alert items are placed)
acc view controls (A list of all the controls to be created by "display enhanced alert")

To see where various things will appear in a dialog see "Where information appears in the Alert"
in Chapter 1.

"display enhanced alert" output

The output consists of a list of the three items: the name of the item that dismissed the alert, the
boolean state of the suppression checkbox, and a list of the values of the controls passed into
"acc view controls"

First item in list: It will either be the name of the button clicked, or "Gave Up" which indicates the
alert timed out from exceeding the time specified in the "giving up after" input parameter.

Second item in list: The boolean state of the suppression checkbox at the time the dialog closed.

Third item in list: A list consisting of the name of the button pressed (or 'Gave Up'), the boolean
state of the suppression button, and a list of the values of the controls passed in 'acc view
controls'.

"display enhanced alert" can take input from14 different handlers to create controls for the alert.
Table 1 shows what those 14 handlers return.

Any data returned from these handlers that "does not" the symbol ‡ following it's description in
table 1 "will" be used by the "display enhanced alert" handler to create the alert. Any data
returned from these handlers that "does" have the symbol ‡ following it's description "will not" be
used by "display enhanced alert" handler.

Name of handler Data returned by handler: listed by list item number

create field 1: NSTextField: Text field that receives text
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

Chapter 3: "display enhanced alert"

create top labeled field 1: NSTextField: Text field that receives text
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create side labeled field 1: NSTextField: Text field that receives text
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
4: class of "field left" input parameter: The width of the field ‡

create path control 1: NSPathControl:
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create labeled path control 1: NSPathControl: Holds selected path
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create checkbox 1: NSButton: The checkbox
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create labeled checkbox 1: NSButton: The checkbox
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
4: class of the "checkbox left" input parameter:

The distance between accessory view's left and checkbox ‡

create popup 1: NSPopUpButton: The popup
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

create labeled popup 1: NSPopUpButton: The popup
2: NSTextField: The label
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
4: class of the " popup left" input parameter:

The distance between accessory view's left and checkbox ‡

create matrix 1: NSMatrix: The matrix (radio buttons)
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
3: real: distance between accessory view's left and checkbox ‡

Name of handler Data returned by handler: listed by list item number

Chapter 3: "display enhanced alert"

Table 1: Types returned by handlers that create controls

‡ This returned item is not used by "display enhanced alert"

create labeled matrix 1: NSMatrix: The matrix (radio buttons)
2: NSTextField:
3: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
4: real: class of the "matrix left" input parameter:

The distance between accessory view's left and checkbox ‡

create label 1: NSTextField: The label
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡
3: real: The actual width ‡

create rule 1: NSBox: Used to draw the line on alert
2: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view ‡

Name of handler Data returned by handler: listed by list item number

Appendix A: Description of how "display
enhanced alert" works

Note: "This Appendix covers advanced topics most readers do not need to know.

Lines 2 -8: StyleType (aka "Alert style") is set to the proper integer value.
Line 9-12: A check is performed to verify user interaction is allowed. If it isn't allowed an error is
created.

Line 14: An NSRect is created using NSMakeRect (x, y, width, height). The "x" and "y" specify
the location of a rectangle while the user supplied width and height form the actual rectangle.
The origin is always specified as [0, 0]. The NSRect is used as input for initWithFrame.
theAccessoryView is set to a new instance of a fully initialized NSView created from alloc()'s
initWithFrame.

LineL 15: Sets up a subview where the controls and text fields specified in controlsList are
placed.

Line 17: Reverses the order of the buttons in buttonsList. The button order in AppleScript is the
reverse of the order in Obj-C.

Line 19: Creates new instance of NSAlert and initializes it.

Lines 22-30: Sets various setting for the NSAlert.
Line 22: Determines type of NSAlert to be created. See "Alert styles" in chapter 1.

Lines 23 & 24: Set the Message & Informative fields.
See "Where information appears in the Alert" in chapter 1.

Lines 25 & 27: Adds all the buttons specified in "buttonsList " to the alert.

Line 28: Set the checkbox suppression state of the alert to the boolean sate specified by
"showSuppression"

Line 29: set the AccessoryView of the Alert to the view created by line 14

Line 30: Let the default behavior handle key event as opposed to programmer handling it.

Line 33: if giveUp > 0 then abortModal method will be set up to run after "giveUp" seconds have
passed. abortModal causes control to exit the modal event loop and return.

Line 35: Invokes the method (runs the handler) "showTheAlert" on the main thread using the
default mode and blocks the current thread until after "showTheAlert" has completed on the main
thread. The handler "showTheAlert" sets the value of returnCode to NSModalResponse.
NSModalResponse is set to the result of runModal which is inside the "showTheAlert" handler.

Line 37: If a nonzero "give up" time was specified and the returnCode from the previous line
(performSelectorOnMainThread) was not cancelPreviousPerformRequestsWithTarget
then there is a timer running for abortModal method from the previous line that needs to be
canceled. Therefore the abortModal request made in line 33 is canceled.

Line 39: The state of the suppressionButton at the time the dialog closed is copied to the variable
suppressedState.

Line 40: Obj-C returns a number representing which button was clicked. Unfortunate 1000 is
returned when the first button is clicked, 1001 is returned for the second button and so on. To
make it easier to work with in "display enhanced alert" 1 is added "returnCode mod 1000" and
returnCode = 1 when button 1 is clicked.

Line 41: if buttonNumber = 0 then the alert timed out

Line 42: Since the alert timed out set buttonName to "Gave Up"

Line 44: Since buttonNumber is valid set buttonName to clicked button name

Line 47: set controlResults to {}

Line 48: start repeat loop to go through all the the controls in controlsList
Lines 49-50: if aControl's kind = NSTextField then add aControl to end of controlResults

Lines 51-52: if aControl's kind = NSPopUpButton then add selection of aControl to end of
controlResults

Lines 53-54: if aControl's kind = NSButton then add aControl's state to end of
controlResults

Lines 55-56: if aControl's kind = NSPathControl then add aControl's URL's path to end of
controlResults

Lines 57-58: if aControl's kind = NSMatrix then add aControl's selectedCell's title to end
of controlResults

Lines 59-60: if aControl's kind = NSBox then add "missing value" to end of controlResults
Lines 62: end repeat loop

0
1

 o
n

 d
isp

la
y e

n
h

a
n

ce
d

 a
le

rt m
ainText m

essage theExplanation as styleType buttons buttonsList suppression
show

S
uppression giving up after giveU

p acc view
 w

idth theW
idth acc view

 height theH
eight acc view

 controls
controlsList
0
2

if styleType =

 critical alert th
e
n

0

3

se

t styleN
um

 to
 2

0
4

e
lse

 if styleType =
 w

arning alert th
e
n

0

5

se

t styleN
um

 to
 0

0
6

e
lse

0

7

se

t styleN
um

 to
 1

0
8

e
n

d
 if

0
9

se

t theError to
 current application's A

EInteractW
ithU

ser(-1, m
issing value, m

issing value) -- -1 is
kA

ED
efaultTim

eout
1

0

if theError is n
o

t 0 th
e
n

1

1

e
rro

r "U
ser interaction disallow

ed" num
ber theError

1
2

e
n

d
 if

1
3

-- m

ake the accessory view

1
4

se

t theA
ccessoryV

iew
 to

 current application's N
S
V
iew

's alloc()'s initW
ithFram

e:(current application's
N

S
M

akeR
ect(0, 0, theW

idth, theH
eight))

1
5

theA

ccessoryV
iew

's setS
ubview

s:controlsList
1

6

-- reverse buttons because they get added in reverse order cf A
S

1
7

se

t buttonsList to
 reverse o

f buttonsList
1

8

-- create an alert
1

9

se
t theA

lert to
 current application's N

S
A
lert's alloc()'s init()

2
0

-- set up alert

2
1

te

ll theA
lert

2
2

its setA
lertS

tyle:styleN
um

2

3

its setM

essageText:m
ainText

2
4

its setInform
ativeText:theExplanation

2
5

re
p

e
a
t w

ith
 anEntry in

 buttonsList
2

6

(its addB
uttonW

ithTitle:anEntry)
2

7

e
n

d
 re

p
e
a
t

2
8

its setS
how

sS
uppressionB

utton:show
S
uppression

2
9

its setA
ccessoryV

iew
:theA

ccessoryV
iew

3

0

its (|w

indow
|()'s setA

utorecalculatesK
eyV

iew
Loop:true)

3
1

e
n

d
 te

ll

3
2

-- if giveU

p value >
 0, tell the app to abort any m

odal event loop after that tim
e, and thus close the panel

3
3

if giveU

p >
 0 th

e
n

 current application's N
S
A
pp's perform

S
elector:"abortM

odal" w
ithO

bject:(m
issing value)

afterD
elay:giveU

p inM
odes:{current application's N

S
M

odalPanelR
unLoopM

ode}
3

4

-- show
 alert in m

odal loop on m
ain thread

3
5

m

y perform
S
electorO

nM
ainThread:"show

TheA
lert:" w

ithO
bject:theA

lert w
aitU

ntilD
one:true

3
6

--

if a giveU
p tim

e w
as specified and the alert didn't tim

eout, cancel the pending abort request
3

7

if giveU
p >

 0 a
n

d
 returnC

ode is n
o

t current application's N
S
M

odalR
esponseA

bort th
e
n

 current application's
N

S
O

bject's cancelPreviousPerform
R
equestsW

ithTarget:(current application's N
S
A
pp) selector:"abortM

odal" object:
(m

issing value)
3

8

-- get values after alert is closed
3

9

se
t suppressedS

tate to
 theA

lert's suppressionB
utton()'s state() a

s boolean
4

0

se
t buttonN

um
ber to

 returnC
ode m

o
d
 1000 +

 1 -- w
here 1 =

 right-m
ost button

4
1

if buttonN

um
ber =

 0 th
e
n

4

2

se

t buttonN
am

e to
 "G

ave U
p"

4
3

e
lse

4

4

se

t buttonN
am

e to
 item

 buttonN
um

ber o
f buttonsList

4
5

e
n

d
 if

4
6

-- get values from

 controls
4

7

se
t controlR

esults to
 {}

4
8

re

p
e
a
t w

ith
 aC

ontrol in
 controlsList

4
9

if (aC
ontrol's isK

indO
fC

lass:(current application's N
S
TextField)) a

s boolean th
e
n

5

0

se
t e

n
d
 o

f controlR
esults to

 aC
ontrol's stringValue() a

s text
5

1

e
lse

 if (aC
ontrol's isK

indO
fC

lass:(current application's N
S
PopU

pB
utton)) a

s boolean th
e
n

5

2

se
t e

n
d
 o

f controlR
esults to

 aC
ontrol's titleO

fS
electedItem

() a
s text

5
3

e
lse

 if (aC
ontrol's isK

indO
fC

lass:(current application's N
S
B
utton)) a

s boolean th
e
n

5

4

se
t e

n
d
 o

f controlR
esults to

 aC
ontrol's state() a

s boolean
5

5

e
lse

 if (aC
ontrol's isK

indO
fC

lass:(current application's N
S
PathC

ontrol)) a
s boolean th

e
n

5

6

se
t e

n
d
 o

f controlR
esults to

 aC
ontrol's |U

R
L|()'s |path|() a

s text
5

7

e
lse

 if (aC
ontrol's isK

indO
fC

lass:(current application's N
S
M

atrix)) a
s boolean th

e
n

5

8

se
t e

n
d
 o

f controlR
esults to

 aC
ontrol's selectedC

ell()'s title() a
s text

5
9

e
lse

 -- N
S
B
ox

6
0

se

t e
n

d
 o

f controlR
esults to

 m
issing value

6
1

e
n

d
 if

6
2

e
n

d
 re

p
e
a
t

6
3

re

tu
rn

 {buttonN
am

e, suppressedS
tate, controlR

esults}

