Chapter 1: The basics about NSAlert

Table of Contents

Table of Contents

Chapter 1: The basics about NSAlert
Alert styles
Alert attributes
Where information appears in the Alert
User Buttons
Identifying which button was clicked
Suppression checkbox

Chapter 2: "display enhanced alert"
"display enhanced alert" input parameters
"display enhanced alert" output

Appendix A: Description of how "display enhanced alert" works

o 01 01 01 W W W W ND DD DN =

Chapter 1: The basics about NSAlert

Chapter 1: The basics about NSAlert

The programmer can specify 6 types of things:
Alert style
Alert text
Button titles
Custom icon
Help text: Can can allow a help button to appear in the alert for help relating to the alert
Suppression checkbox: Option to show/hide checkbox to suppress future alters

The default alert style is NSWarningAlertStyle.

Alert styles
"Alert style" is a property of NSAlert

NSWarningAlertStyle (integer constant = 0)
Used to warn the user about a current or impending event. The purpose is more than
informational but not critical.

NSInformationalAlertStyle (integer constant = 1)
An alert used to inform the user about a current or impending event.

NSCiriticalAlertStyle (integer constant = 2)

Reserved for critical alerts, such as when severe consequences might result from certain user
responses (for example, a “clean install” will erase all data on a volume). This style includes a
caution icon badged with the app icon.

Currently there is no visual difference between informational and warning alerts. You should only
use the critical alert style if warranted.

Alert attributes
NSAlert objects have the following attributes:
Type: (Integer) NSWarningAlertStyle, NSinformationalAlertStyle, NSCriticalAlertStyle

Message text: (String) The main message of the alert.

Informative text: (String) Additional information about the alert.

Response buttons: (set of NSButtons) The buttons the user can click.

Suppression checkbox: (boolean) Show or hides the suppression checkbox.

Accessory view: (NSView) Where the controls and fields specified by scripter are placed.
Icon: This is not currently implemented in the "display enhanced alert" handler.

Help: This is not currently implemented in the "display enhanced alert" handler.

Chapter 1: The basics about NSAlert

Where information appears in the Alert

NSAlerts display information in a particular order from top to bottom, except the icon which is to
the left of all the other information. The order is listed below:

Message text

Informative text

Accessory view

Suppression checkbox

Response buttons

The icon is show in the top left corner of the alert: not currently implemented

The accessory view is where the: text fields, labeled fields, checkboxes, popups, radio button
matrixes, path controls and rules are placed.

User Buttons
A default button is automatically created when a NSAlert is called. The button uses the "return
key" as a keyboard shortcut.

Any button with a title of "Cancel" will automatically use the escape key as a keyboard shortcut.

Any button with the title "Don’t Save" and is not the first (rightmost) button will automatically use
the keyboard shortcut Command-D as a keyboard shortcut.

Other key board shortcuts for buttons can be added by using the method "setKeyEquivalent" of
the NSButton class.

All buttons, except the the default button, have to be added using the method
"addButtonWithTitle"

The first button (the "default button") is placed at the far right of button row at the bottom of the
alert. Each new button is added to the left of the previously existing button(s).

Identifying which button was clicked
Buttons are identified by their horizontal position starting from the rightmost button. The number
to identify the Nth most button from the right is equal to 999 + N, e.g. 1000 means the rightmost
is being referenced, 1002 means the third button from the right edge of the dialog is being
referenced, 1005 means the sixth button from the right edge of the dialog is being referenced,
and so on.

There are 3 predefined integer constants to identify the first 3 buttons:
NSAlertFirstButtonReturn = 1000, which means the first button was clicked
NSAlertSecondButtonReturn = 1001, which means the second button was clicked
NSAlertThirdButtonReturn = 1002 which means the third button was clicked

Suppression checkbox
The "Suppression checkbox" is a property of NSAlert. When "TheAlert.showsSuppressionButton"
is set to "Yes" (The variable "TheAlert" holds a pointer to the Alert data structure in memory) a
check box followed by programmer specified text is displayed on the Alert. If

Chapter 1: The basics about NSAlert

"TheAlert.showsSuppressionButton" is set to "No" then then neither the check box nor the
programmer specified text is displayed and the row of buttons moves up to fill in the place that
would have been uses for the check box. By default this value is set to "No" which which does
not show the check box and is associated suppression text.

The suppression checkbox allows the user to click the suppression checkbox, which will
suppress the display of future alerts when the event that triggered the current alert occurs again.

A suppression checkbox has the following text displayed to the right of the text box: “Do not show
this message again” This is the default text displayed. The text is actually the title of the
checkbox. This text can be changed by the following expression:

[[alert suppressionButton] setTitle:@"My new button title."];

This expression references the suppressionButton of the alert and sets it to the new value.

Chapter 2: "display enhanced alert"

"display enhanced alert" input parameters

The parameters of "display enhanced alert" are:
direct parameter (called "Message text" in NSAlert)
message (called "Informative text" in NSAlert)
as (called "Alert style" in NSAlert)
buttons (NSAlert property is called "buttons," aka "Response buttons" in Obj-C docs)
suppression (aka SuppressionButton in Obj-C docs)
giving up after (Not done by NSAlert, entirely implemented in "display enhanced alert")
acc view width (Used to create an "Accessory View" where alert items are placed)
acc view height (Used to create an "Accessory View" where alert items are placed)
acc view controls (A list of all the controls to be created by "display enhanced alert")

To see where various things will appear in a dialog see "Where information appears in the Alert"
in Chapter 1.

"display enhanced alert" output

The output consists of a list of the three items: the name of the item that dismissed the alert, the
boolean state of the suppression checkbox, and a list of the values of the controls passed into
"acc view controls"

First item in list: It will either be the name of the button clicked, or "Gave Up" which indicates the
alert timed out from exceeding the time specified in the "giving up after" input parameter.

Second item in list: The boolean state of the suppression checkbox at the time the dialog closed.

Third item in list: A list consisting of the name of the button pressed (or 'Gave Up'), the boolean
state of the suppression button, and a list of the values of the controls passed in 'acc view
controls'.

"display enhanced alert" can take input from14 different handlers to create controls for the alert.
Table 1 shows what those 14 handlers return.

Any data returned from these handlers that "does not" the symbol 1 following it's description in
table 1 "will" be used by the "display enhanced alert" handler to create the alert. Any data
returned from these handlers that "does" have the symbol 1 following it's description "will not" be
used by "display enhanced alert" handler.

Name of handler Data returned by handler: listed by list item number

create field 1: NSTextField: Text field that receives text
2: class of the "bottom" input parameter:
Distance from top of control to bottom of accessory view £

Chapter 2: "display enhanced alert"

Name of handler Data returned by handler: listed by list item number

create top labeled field 1:
2:
3:

create side labeled field 1:
: NSTextField: The label
: class of the "bottom" input parameter:

NSTextField: Text field that receives text

NSTextField: The label

class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view £

NSTextField: Text field that receives text

Distance from top of control to bottom of accessory view #

. class of "field left" input parameter: The width of the field

create path control 1:
: class of the "bottom" input parameter:

create labeled path control

wWnN =

NSPathControl:

Distance from top of control to bottom of accessory view £

: NSPathControl: Holds selected path
: NSTextField: The label
: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view #

create checkbox 1:
: class of the "bottom" input parameter:

create labeled checkbox 1:
: NSTextField: The label
: class of the "bottom" input parameter:

NSButton: The checkbox

Distance from top of control to bottom of accessory view #

NSButton: The checkbox

Distance from top of control to bottom of accessory view £

: class of the "checkbox left" input parameter:

The distance between accessory view's left and checkbox 1

create popup 1:
: class of the "bottom" input parameter:

create labeled popup 1:
: NSTextField: The label
: class of the "bottom" input parameter:

NSPopUpButton: The popup

Distance from top of control to bottom of accessory view £

NSPopUpButton: The popup

Distance from top of control to bottom of accessory view }

: class of the " popup left" input parameter:

The distance between accessory view's left and checkbox

create matrix 1:
: class of the "bottom" input parameter:

NSMatrix: The matrix (radio buttons)

Distance from top of control to bottom of accessory view £

. real: distance between accessory view's left and checkbox t

Chapter 2: "display enhanced alert"

Name of handler Data returned by handler: listed by list item number

create labeled matrix 1:
2:
3:

NSMatrix: The matrix (radio buttons)

NSTextField:

class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view £

: real: class of the "matrix left" input parameter:

The distance between accessory view's left and checkbox 1

create label 1: NSTextField: The label
2: class of the "bottom" input parameter:
Distance from top of control to bottom of accessory view £
3: real: The actual width }
create rule 1: NSBox: Used to draw the line on alert

: class of the "bottom" input parameter:

Distance from top of control to bottom of accessory view 4

Table 1: Types returned by handlers that create controls

¥ This returned item is not used by "display enhanced alert"

Appendix A: Description of how "display
enhanced alert” works

Lines 2 -8: StyleType (aka "Alert style") is set to the proper integer value.
Line 9-12: A check is performed to verify user interaction is allowed. If it isn't allowed an error is
created.

Line 14: An NSRect is created using NSMakeRect (x, y, width, height). The "x" and "y" specify
the location of a rectangle while the user supplied width and height form the actual rectangle.
The origin is always specified as [0, 0]. The NSRect is used as input for initWithFrame.
theAccessoryView is set to a new instance of a fully initialized NSView created from alloc()'s
initWithFrame.

LineL 15: Sets up a subview where the controls and text fields specified in controlsList are
placed.

Line 17: Reverses the order of the buttons in buttonsList. The button order in AppleScript is the
reverse of the order in Obj-C.

Line 19: Creates new instance of NSAlert and initializes it.

Lines 22-30: Sets various setting for the NSAlert.
Line 22: Determines type of NSAlert to be created. See "Alert styles" in chapter 1.

Lines 23 & 24: Set the Message & Informative fields.
See "Where information appears in the Alert" in chapter 1.

Lines 25 & 27: Adds all the buttons specified in "buttonsList " to the alert.

Line 28: Set the checkbox suppression state of the alert to the boolean sate specified by
"showSuppression"

Line 29: set the AccessoryView of the Alert to the view created by line 14
Line 30: Let the default behavior handle key event as opposed to programmer handling it.

Line 33: if giveUp > 0 then abortModal method will be set up to run after "giveUp" seconds have
passed. abortModal causes control to exit the modal event loop and return.

Line 35: Invokes the method (runs the handler) "showTheAlert" on the main thread using the
default mode and blocks the current thread until after "showTheAlert" has completed on the main
thread. The handler "showTheAlert" sets the value of returnCode to NSModalResponse.
NSModalResponse is set to the result of runModal which is inside the "showTheAlert" handler.

Appendix A: Description of how "display enhanced alert" works

Line 37: If a nonzero "give up" time was specified and the returnCode from the previous line
(performSelectorOnMainThread) was not cancelPreviousPerformRequestsWithTarget

then there is a timer running for abortModal method from the previous line that needs to be
canceled. Therefore the abortModal request made in line 33 is canceled.

Line 39: The state of the suppressionButton at the time the dialog closed is copied to the variable
suppressedState.

Line 40: Obj-C returns a number representing which button was clicked. Unfortunate 1000 is
returned when the first button is clicked, 1001 is returned for the second button and so on. To
make it easier to work with in "display enhanced alert" 1 is added "returnCode mod 1000" and
returnCode = 1 when button 1 is clicked.

Line 41: if buttonNumber = 0 then the alert timed out

Line 42: Since the alert timed out set buttonName to "Gave Up"

Line 44: Since buttonNumber is valid set buttonName to clicked button name

Line 47: set controlResults to {}

Line 48: start repeat loop to go through all the the controls in controlsList
Lines 49-50: if aControl's kind = NSTextField then add aControl to end of controlResults

Lines 51-52: if aControl's kind = NSPopUpButton then add selection of aControl to end of
controlResults

Lines 53-54: if aControl's kind = NSButton then add aControl's state to end of
controlResults

Lines 55-56: if aControl's kind = NSPathControl then add aControl's URL's path to end of
controlResults

Lines 57-58: if aControl's kind = NSMatrix then add aControl's selectedCell's title to end
of controlResults

Lines 59-60: if aControl's kind = NSBox then add "missing value" to end of controlResults
Lines 62: end repeat loop

01 on display enhanced alert mainText message theExplanation as styleType buttons buttonsList suppression
showSuppression giving up after giveUp acc view width theWidth acc view height theHeight acc view controls
controlsList

02 if styleType = critical alert then

03 set styleNum to 2

04 else if styleType = warning alert then
05 set styleNum to O

06 else

07 set styleNum to 1

08 endif

09 set theError to current application's AEInteractWithUser(-1, missing value, missing value) -- -1 is
kAEDefaultTimeout
10 if theError is not O then

11 error "User interaction disallowed" number theError
12 endif
13 -- make the accessory view

14 set theAccessoryView to current application’s NSView's alloc()'s initWithFrame:(current application’s
NSMakeRect(0, 0, theWidth, theHeight))
15 theAccessoryView's setSubviews:controlsList

16 -- reverse buttons because they get added in reverse order cf AS
17 set buttonsList to reverse of buttonsList

18 -- create an alert

19 set theAlert to current application's NSAlert's alloc()'s init()
20 -- set up alert

21 tell theAlert

22 its setAlertStyle:styleNum

23 its setMessageText:mainText

24 its setInformativeText:theExplanation

25 repeat with anEntry in buttonsList

26 (its addButtonWithTitle:anEntry)

27 end repeat

28 its setShowsSuppressionButton:showSuppression

29 its setAccessoryView:theAccessoryView

30 its (|Jwindow|()'s setAutorecalculatesKeyViewLoop:true)

31 end tell

32
33

-- if giveUp value > 0, tell the app to abort any modal event loop after that time, and thus close the panel
if giveUp > 0 then current application's NSApp's performSelector:"abortModal" withObject:(missing value)

afterDelay:giveUp inModes:{current application’s NSModalPanelRunLoopMode}

34
35
36
37

-- show alert in modal loop on main thread

my performSelectorOnMainThread:"showTheAlert:" withObject:theAlert waitUntilDone:true

-- if a giveUp time was specified and the alert didn't timeout, cancel the pending abort request

if giveUp > 0 and returnCode is not current application's NSModalResponseAbort then current application’s

NSObject's cancelPreviousPerformRequestsWithTarget: (current application's NSApp) selector:"abortModal" object:
(missing value)

38
39
40
a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

-- get values after alert is closed
set suppressedState to theAlert's suppressionButton()'s state() as boolean
set buttonNumber to returnCode mod 1000 + 1 -- where 1 = right-most button
if buttonNumber = 0 then
set buttonName to "Gave Up"
else
set buttonName to item buttonNumber of buttonsList
end if
-- get values from controls
set controlResults to {}
repeat with aControl in controlsList
if (aControl's isKindOfClass:(current application's NSTextField)) as boolean then
set end of controlResults to aControl's stringValue() as text
else if (aControl's isKindOfClass:(current application's NSPopUpButton)) as boolean then
set end of controlResults to aControl's titleOfSelectedItem() as text
else if (aControl's isKindOfClass:(current application's NSButton)) as boolean then
set end of controlResults to aControl's state() as boolean
else if (aControl's isKindOfClass:(current application's NSPathControl)) as boolean then
set end of controlResults to aControl's |URL|()'s |path|() as text
else if (aControl's isKindOfClass:(current application's NSMatrix)) as boolean then
set end of controlResults to aControl's selectedCell()'s title() as text
else -- NSBox
set end of controlResults to missing value
end if
end repeat
return {buttonName, suppressedState, controlResults}

